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are human viruses that may
cross over to other species
(swine, seals).

• Poultry, including chickens and
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Hemagglutinin (HA) ProteinHemagglutinin (HA) Protein

• Surface glycoprotein that must be
cleaved into HA1 and HA2 subunits
to be infectious (necessary to release
fusion domain).

• HA contains receptor binding site
(receptor = sialic acid).

• Fusion domain becomes active when
pH is lowered in endosome.

• Antibodies to HA are the most
important for protective immunity.

• No cross protection between HA
subtypes (15).
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• Sialic acid is one type of sugar found
in glycosylated proteins.

• Sialic acid can be attached to the
galactose backbone by different
linkages.

•  α 2,3 and α 2,6 are the most
common with some animals having
primarily one or both of these
linkages.
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• Influenza viruses have preferences
for one type of linkage, with most
Avian viruses having an α 2,3
preference and human viruses
having an α 2,6 linkage.
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• Infection can be asymptomatic or 
cause severe disease with high 
mortality.

• Localized vs. systemic infection.

• Enteric-wild ducks and shorebirds, 
poultry.

• Respiratory-humans, swine, horses, 
poultry, domestic ducks, seal, mink.

• Systemic-chickens, turkeys, other 
gallinaceous birds, terns
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some protection.
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• Antigenic drift - accumulation of
point mutations in influenza viral
genes (HA) that result in decreasing
antibody protection.

• Current vaccines must be
reevaluated yearly to assure a good
antigenic match of vaccine to likely
challenge strain.

• An educated guess is used to predict
what the  circulating strain will be for
the following year to give time to
produce the vaccine.
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• Antigenic shift- circulation of an

influenza virus with a HA subtype
that is new to the host population.

• Host population has no or only
limited protection to the new virus.

• Occurs only in longer lived animals
that are naturally exposed or
vaccinated (swine, horses, humans).
–Spanish Flu H1N1 1917
–Asian Flu H2N2 1957
–Hong Kong Flu H3N2 1968
–Equine Type 2 H3N8
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no longer replicate well in the
originating wild bird host.
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linkage in sialic acid) plays a role.
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• Efficient transmission.

–Many AI viruses replicate well in
new host, but fail to transmit
efficiently (ex., H5N1 in humans).

–Factors affecting transmission
unknown.
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cross the species barrier and
replicate in other hosts (swine flu in
turkeys).
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pathogenic.
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factor.

• Virulence in humans and birds not
clearly associated.
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• Direct spread of Avian Influenza
viruses from wild bird reservoir to
new host.
–Virus must replicate and transmit

efficiently in new host to be
maintained.

–The constellation of all eight
influenza genes are important.

–Sialic present (α 2,3 and α 2,6) in
host may be an important factor.

–Host genetics are important (turkey
susceptibility>chickens).
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Avian Influenza Viruses From Wild
Birds(?) Crossing Mammalian

Species Barrier
Species Subtype Location and Year
Striped Whales H1N3 Pacific Ocean 1976
Swine H3N2 China 1978-
Swine H1N1 Europe and Asia 1979-
Seals, Humans H7N7 Massachusetts 1980
Harbor Seals H4N5 New England 1982-83
Pilot Whale H13N9

H13N2
Portland, Maine 1984

Mink H10N4 Sweden 1984
Equine H3N8 Northeast China 1989
Seal H3N3 New England 1991,1992
Seal H4N6 New England 1991,1992
Human H7N7 England 1996
Swine H4N6 Canada 1999
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Human H7N7 in EnglandHuman H7N7 in England

• A single case of self-limiting
conjunctivitis occurred in an adult
female in 1996.

• H7N7 Avian-like influenza was
isolated.

• Woman raised ducks and had history
of foreign body (straw) in her eye.

• No spread of infection was observed.
• H7N7 has been associated with

human disease on four different
occasions.
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• In 1999 a disease outbreak of H4N6
influenza in swine farm in Ontario.

• Pigs were exposed to untreated lake
water (likely exposure to AI virus).

• Evidence of limited spread of the
virus to other swine herds.

• Outbreak was self-limiting.
• Outbreaks like that this may be

common but undiagnosed.
• H9N2, H5N1, and other subtypes

reported from Asia.
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• Three viruses replicated in humans
with virus shedding and mild clinical
disease, but no rise in antibody
titers.

–Duck/Pennsylvania/486/69 (H6N1)

–Duck/Alberta/288/78 (H4N8)

–Turkey/Minnesota/3/79 (H10N7)

• Some volunteers had increased
antibody titers to other subtypes but
no detectable virus shedding (4 of 9
viruses).
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Model 2 of Viral SpreadModel 2 of Viral Spread

• Mixing vessel hypothesis.

–Reassortment of two viruses in a
susceptible host that broadens
host range.

–Swine have both α 2,3 and α 2,6
sialic acid linkages.

–Avian viruses and human viruses
can both potentially replicate in
swine.
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– If both viruses infect a pig at the

same time, they can potentially
reassort, resulting in a virus with an
Avian Influenza hemagglutinin gene
with human adapted internal genes.

– Such a virus could theoretically
replicate and transmit well in the
new host (humans), resulting in an
antigenic shift and a new human
pandemic.
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infecting humans (occasionally with
lethal results).
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with some host adaptation.

–Spread of modified virus to new
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–Reassortment between different
viruses may play a role.
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previously circulating Avian
Influenza viruses in poultry.

• Virus spread directly from
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disease with high mortality.
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H5H5 N1N1

NP, MA, NS, PB1, PB2, PANP, MA, NS, PB1, PB2, PA

Netherlands H7N7Netherlands H7N7
• Outbreak of HPAI in chickens and

turkeys, resulting in depopulation of
>28 million birds.

• Poultry virus spread to over 80
humans and contributed to one
human death.

• Caused mostly conjunctivitis, but
some influenza-like illness.

• Some evidence of person to person
spread.

• Serologic evidence of H7 infection in
pigs on infected poultry farms.
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Numbers GameNumbers Game
• Exposure of humans and domestic

animals to Avian Influenza viruses
occurs frequently.

• Most of the time the viruses don’t
replicate well because it lacks proper
gene constellation.

• Occasionally replicates well (causes
disease) but doesn’t transmit
efficiently.

• Rare opportunities for viruses to
adapt and become endemic in new
host species.
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Live Bird Markets (LBMs)Live Bird Markets (LBMs)

• LBMs serves a niche of 
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for birds compared to poultry at 
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domestic animals.

–Minnesota has reduced Avian
Influenza outbreaks in turkeys with
change to confinement rearing.
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• We remain unable to predict which AI
viruses pose a zoonotic risk.

• Exposure to Avian Influenza viruses
occurs frequently.

• Few markers for human infection or
virulence have been identified
(Position 627 of PB2 gene).

• Current animal husbandry practices,
particularly live bird markets, provide
opportunities for human exposure.

• Minimum levels of precaution should
be used with any influenza virus.
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